Robust bent line regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bent functions and line ovals

In this paper we study those bent functions which are linear on elements of spreads, their connections with ovals and line ovals, and we give descriptions of their dual bent functions. In particular, we give a geometric characterization of Niho bent functions and of their duals, we give explicit formula for the dual bent function and present direct connections with ovals and line ovals. We also...

متن کامل

Sliding Line Point Regression for Shape Robust Scene Text Detection

Traditional text detection methods mostly focus on quadrangle text. In this study we propose a novel method named sliding line point regression (SLPR) in order to detect arbitrary-shape text in natural scene. SLPR regresses multiple points on the edge of text line and then utilizes these points to sketch the outlines of the text. The proposed SLPR can be adapted to many object detection archite...

متن کامل

Robust Regression

An introduction to robustness in statistics, with emphasis on its relevance to regression analysis. The weaknesses of the least squares estimator are highlighted, and the idea of error in data re ned. Properties such as breakdown, e ciency and equivariance are discussed and, through consideration of M, S and MM-estimators in relation to these properties, the progressive nature of robust estimat...

متن کامل

Robust Regression

1. Introduction One of the most important statistical tools is a linear regression analysis for many fields. Nearly all regression analysis relies on the method of least squares for estimation of the parameters in the model. A problem that we often encountered in the application of regression is the presence of an outlier or outliers in the data. Outliers can be generated by from a simple opera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Planning and Inference

سال: 2017

ISSN: 0378-3758

DOI: 10.1016/j.jspi.2017.01.001